LAMINAR BOUNDARY LAYER AT A PERMEABLE SURFACE

A, L. Lesnikov UDC 532.526.2

A universal equation for the boundary layer with continuous suction is proposed and solved
(to the first approximation) in Crocco variables,

A new approach to solving problems of a boundary layer at a permeable surface [1] is based on the
parametric method by L. G. Loitsyanskii [2] and its gist is to reduce the fundamental equations to a form
which depends neither on the specific velocity distribution in the main stream nor on the velocity of the
fluid across the surface. The effect of the main stream and of the injection or suction rate is accounted
for by two series of parameters. A universal equation was used in [1] for generalizing the flow function in
ordinary similarity variables. No numerical solution was obtained there, however; the author went only
as far as expanding the solution into power series,

Here we will derive a universal equation in Crocco variables for a laminar isothermal boundary layer
at a permeable surface and will show numerical results obtained with the aid of a digital computer,

We define injection to or suction from the boundary layer by specifying the trangverse velocity v ()
of fluid flow through the surface. Formulation of the problem in Crocce variables for a permeable wall dif-
fers from such a formulation for an impermeable wall by the presence of velocity vy(x) in the boundary con-
-dition at the wall,

The original equation is
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Fig.1. Distribution of frictional stress ¢ across a boundary
layer at a plate when suction occurs.

Fig.2, Distributions of frictional stress in a boundary layer
for A = 0.4; f,, and f e, are values of the form factor f at the
stagnation point and at the separation point respectively.
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Fig.3. Fundamental characteristics of a boundary layer: F (£,
A) and Z(f, A}, Dasbedcurvesrepresentdata in {1}.
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We introduce into Eq. (1) the dimensionless variables
q= u o — Th
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A transformation by means of
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We will now show that Eq. (2) with the respective boundary conditions can be reduced to a universal
form which does not depend on the specific velocity distributions U () and v(x).

First of all, we use the momentum equation, which will be derived directly from (1) by twice integrat-
ing both parts with respect to u,

With the boundary conditions in (1) we have
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(T ¢ denotes the value of 7 at the wall}, The first integral in (3} is evaluated by parts
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£ / Changing the order of differentiations and integrations on the left-

// hand side of (4), together with a few additional operations, will reduce (3)
04 \ pr to
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' N F Introducing the conventional thicknesses of the boundary layer,
\\ namely:
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\k the displacement thickness
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Fig.4. Comparison of ap- 8= 5 (1— —u—) oy
proximate with exact F(A) vje

and ¢(A) curves for a plate,
Dashed curves represent
data in [4].

the momentum thickness

U
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we arrive at the following momentum equation in Crocco variables:
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which could also be derived from the integral momentum condition in ordinary variables.
We will now define the quantity h;

&
h= 5, (6)

and examine the generalizing-similarity representation of the quantity w as a function of the similarity vari-
ables:

0=0M; fi, fo v My Ay L) (7
The following quantities serve here as the similarity parameters:
. drU 8§ \* )

fo= kL ( T ) (.%.) , (8)

1

dE1 o & Ly
Ay = — Uk — [ = k=12, ..). 9
" dxk"l(Vv )(V) ( - @

The fk—parameters are related to the velocity distribution in the main stream, while the Ay -param-
eters are related to the distribution of surface injection (A < 0) or surface suction (A; > 0). Functions U)
and v,(x) are assumed analytic.

With the aid of (7)-(9), the momentum equation can be represented in any one of the following forms:
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Parameters f) and A satisfy the recurrence relations
u .. ; —
" Bly= 1k — U1+ kF1f+ fon = O
(12)
u ...
YJ‘,“fﬂm ={k— 1} +(2k—1)/2] Fyhy + by = Yoy
which follow from (8) and (9) if the momentum equation in form (11) is used.

We now insert the generalizing-similarity representation (7) into Eq. (1). Replacing here the deriva-
tives with respect to x by derivatives with respect to f, and A, in accordance with the relation
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and taking into consideration (6), (10), (12), we arrive at the desired universal equation
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For a more convenient numerical integration, we make another change of variables in this equation
by letting
®? = .

As a result, we finally obtain for a laminar boundary layer at a permeable surface the following uni-
versal equation in Crocco variables:
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where ¢(%) (7) may be treated as the solution to the ordinary differential equation of a longitudinal stream
around a plate
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This equation is obtained from (13) with fi = A = 0(k =1,2, .. .), if the magnitude of the constant
B is chosen on the basis of the condition
F(0; 0, ..., 0,..)=2B2= 2B 80 (0), B=0.470.
The characteristic functions F, ¢, and H are defined by the solution to Eq. (13) according to
F=2[l—@Q+H[,—M], t=BVYSWO; [, fb ..., Ay Ay, o),
(15)

Equation (18) is simpler than the universal equation in ordinary variables [1]. In terms of Crocco
variables it is one order lower.

For fy = 0, 4 =0(k=1,2,...) Eq. (13) becomes the Loitsyanskii equation [2].

Equation_ (13) was integrated with the aid of a BESM-2M computer, in an approximation including only
the parameters f;, A; and considering only the local effect of suction A, as the latter was varied from 0 to
0.5.
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We note that Eq. (13) has a singularity at point i = 1, since the coefficient of the first derivative be-
" comes zero then. Calculations have shown that this does not cause any particular difficulties in the numeri-
cal integration and it affects the process only when Ay = 0.

For an approximation of the differential equation
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(the subscripts to parameters f and A have, of course, been omitted) which corresponds to the proposed
‘approximation, we used the three-point scheme, The resultant system of equations was solved by the elim-
ination method with iterations on each layer. First we calculated the zero layer, i.e., we solved the prob-
lem of a longitudinal stream around a plate, with a parabola taken as the initial approximation, The trans-
verse direction was covered in 0,005 steps, Curves of #(n) for a plate are shown in Fig.1 with various
values of A, The longitudinal problem was solved in Af = 0.005 steps from point f = 0 to the right to the
point where F = 0 and to the left to the separation point, The steps were narrowed upon approaching the
stagnation point and the separation point. The trend of function ¢ (n) at several values of f is shown in Fig.
2 for A =0.4.

Solving the specific problem by the parametric method reduces to an integration of the ordinary first-
order differential equation
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Curves of F(f, A) and z(f, A) have been calculated by formulas (15) and are shown in Fig.3. The
dashed curves represent data in [1], verified on an example of a boundary layer subject to suction at a cylin-
drical surface with a sinusoidally varying velocity in the main stream.

The cylinder problem in an exact formulation has been solved by R. M. Terrill [3] for vy = 0.5 and v,
= 0. The maximum value of the suction parameter A at the separation point is 0.318 at vy = 0.5. A compar-
ison of the solution by the proposed method as well as the solution by the method in [1] with the exact solu-
tion is limited to only this value of parameter A,

For a suction rate v, = 0.5, the proposed method yields a distribution of frictional stress at the cyl-
inder surface which is almost identical to the distribution obtained by the exact method, and this includes
the region near the separation point. At vy= 0 (X = 0) the frictional siress within the diffusion zone of the
boundary layer is lower and separation is forestalled (xg = 1.79 instead of the exact xg = 1.82).

The method in [1], on the contrary, yields better results in determining the separation point at low
suction rates (xg = 1.81 at v = 0); the error of the method increases with larger value of A and leads to
premature separation.

For the case of a permeable plate, our results can be compared with the exact solution in [4] over the
entire range of A values (Fig.4). The proposed method yields somewhat higher values of F (A} and £(3). The
maximum error does not exceed 3.5%.

NOTATION

T =u(Bu/dy) is the shearing stress in the boundary layer;

X,y are the longitudinal and transverse coordinate respectively;

is the longitudinal velocity component;

is the injection or suction rate;

is the velocity of main stream;

is the dimensionless velocity;

is the generalizing-similarity representation of friction stress;
is the density;
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M,V are the dynamic and kinematic viscosity respectively;

h is the conventional thickness of boundary layer;
5é is the displacement thickness, in Crocco variables;
dg* is the momentum thickness;

Z¥* = /v,

F . ¢, H are the boundary-layer characteristics;

o A are the parameters;

B is the normalizing constant;

4 = o.Jz;

Ois X are the right-hand sides of recurrence relations,
Subscripts

0 refers to the wall;

(0) refers to the initial value;

k consecutive number;

X coordinate of the separation point;

! derivative with respect to x.
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